A volatilidade média em movimento é excelente
Calcule a volatilidade histórica no Excel Esta planilha calcula a volatilidade histórica de um estoque. Ele usa dados de retorno baixados automaticamente do Yahoo. A volatilidade histórica é o desvio padrão dos retornos históricos de um activo8217s. O desvio padrão é calculado em uma janela de tempo em movimento. A volatilidade histórica de um estoque é distinta da volatilidade implícita de uma opção. O primeiro representa movimentos passados no preço. O último representa as expectativas futuras sobre os movimentos de preços, e é calculado a partir do preço da opção. Ao comparar a volatilidade histórica do subjacente com a volatilidade implícita da opção, os investidores podem avaliar se a opção é barata ou dispendiosa. Se a volatilidade implícita é alta, a venda da opção é sensata. No entanto, se a volatilidade implícita for baixa, a opção é uma boa compra. Como calcular a volatilidade histórica Calcule o log natural do preço atual das ações para o preço das ações de ontem8217s. Este é o retorno continuamente composto. Calcule o retorno médio em uma janela de tempo de mudança de n dias. Um valor de n 21 representa o número típico de dias de negociação em um mês e é freqüentemente usado. Valores inferiores a estes tendem a produzir muito ruído nos resultados. Quanto maior a janela de tempo, mais suave os resultados. Calcule o desvio padrão dos retornos ao longo da janela do tempo móvel. Anualizar o desvio padrão diário multiplicando pela raiz quadrada do número de dias em um ano. O número médio de dias de negociação em um ano é 252. Calcular a volatilidade histórica no Excel A planilha automatiza as etapas descritas acima e é simples de usar. Basta inserir o ticker de ações, as datas de início e término e a janela de volatilidade (ou seja, o número de dias em que a volatilidade é calculada). A data de término é definida como NOW () por padrão, o que dá a data atual. Depois de clicar no botão, as transferências de planilha retornam dados do Yahoo usando o VBA. Então, o gráfico irá traçar a volatilidade histórica (com base no ajuste diário ajustado) 21 pensamentos sobre ldquo Calcule a volatilidade histórica no Excel rdquo Oi, isso foi muito bom até depois do 4 de julho, recentemente, não consegui mais baixar os dados para Dow Jones (DJI), mas outros ainda funcionam bem com outros dados, e, g, FTSE, DAX, que uso diariamente. Alguém poderia olhar isso Muito obrigado. T. Por favor, ignore o pedido, pois o I8217ve corrigiu o problema8230. O yahoo foi e mudou o ticker do estoque 8211 it8217s agora DJIA. Ótima ferramenta, mas, infelizmente, no Excel para Mac 2017, há uma mensagem de erro VBS. De algum modo, seus outros arquivos de excel que funcionam no Excel 2002 funcionam. Existe um trabalho ao redor ou outra versão desta planilha que funcionaria no Mac. Eu tenho uma pergunta, como eu leio esse gráfico? O que isso significa se o voltaímetro é alto e o fechamento ajustado é baixo. Eu estou procurando quando eles estão próximos Para um outro excelente app, pelo fato de Frank Zampella dizer: Como a Base de Conhecimento Mestre de Planilhas Gratuitas Publicações RecentesExplorando A Volatilidade Médica Mover Ponderada Exponencialmente é a medida de risco mais comum, mas vem em vários sabores. Em um artigo anterior, mostramos como calcular a volatilidade histórica simples. (Para ler este artigo, consulte Usando a volatilidade para avaliar o risco futuro.) Usamos os dados atuais do preço das ações da Googles para calcular a volatilidade diária com base em 30 dias de estoque de dados. Neste artigo, melhoraremos a volatilidade simples e discutiremos a média móvel ponderada exponencialmente (EWMA). Vs históricos. Volatilidade implícita Primeiro, colocamos essa métrica em um pouco de perspectiva. Existem duas abordagens amplas: volatilidade histórica e implícita (ou implícita). A abordagem histórica pressupõe que o passado é o prólogo que medimos a história na esperança de que seja preditivo. A volatilidade implícita, por outro lado, ignora o histórico que resolve para a volatilidade implícita nos preços de mercado. Espera que o mercado conheça melhor e que o preço de mercado contenha, mesmo que de forma implícita, uma estimativa consensual da volatilidade. (Para leitura relacionada, veja Os Usos e Limites da Volatilidade.) Se nos concentrarmos apenas nas três abordagens históricas (à esquerda acima), eles têm dois passos em comum: Calcule a série de retornos periódicos Aplicar um esquema de ponderação Primeiro, nós Calcule o retorno periódico. Isso geralmente é uma série de retornos diários, em que cada retorno é expresso em termos compostos continuamente. Para cada dia, tomamos o log natural da proporção dos preços das ações (ou seja, preço hoje dividido por preço ontem e assim por diante). Isso produz uma série de retornos diários, de u i to u i-m. Dependendo de quantos dias (m dias) estamos medindo. Isso nos leva ao segundo passo: é aqui que as três abordagens diferem. No artigo anterior (Usando o Volatility To Gauge Future Risk), mostramos que sob um par de simplificações aceitáveis, a variância simples é a média dos retornos quadrados: Observe que isso resume cada um dos retornos periódicos, então divide esse total pelo Número de dias ou observações (m). Então, é realmente apenas uma média dos retornos periódicos quadrados. Dito de outra forma, cada retorno quadrado recebe um peso igual. Então, se o alfa (a) é um fator de ponderação (especificamente, um 1m), então uma variância simples parece algo assim: O EWMA melhora a diferença simples. A fraqueza dessa abordagem é que todos os retornos ganham o mesmo peso. O retorno de Yesterdays (muito recente) não tem mais influência sobre a variação que o retorno dos últimos meses. Esse problema é corrigido usando a média móvel ponderada exponencialmente (EWMA), na qual os retornos mais recentes têm maior peso na variância. A média móvel ponderada exponencialmente (EWMA) apresenta lambda. Que é chamado de parâmetro de suavização. Lambda deve ser inferior a um. Sob essa condição, em vez de pesos iguais, cada retorno quadrado é ponderado por um multiplicador da seguinte forma: por exemplo, RiskMetrics TM, uma empresa de gerenciamento de risco financeiro, tende a usar uma lambda de 0,94 ou 94. Neste caso, o primeiro ( Mais recente) o retorno periódico ao quadrado é ponderado por (1-0,94) (94) 0 6. O próximo retorno ao quadrado é simplesmente um múltiplo lambda do peso anterior neste caso 6 multiplicado por 94 5,64. E o peso do terceiro dia anterior é igual (1-0,94) (0,94) 2 5,30. Esse é o significado de exponencial em EWMA: cada peso é um multiplicador constante (isto é, lambda, que deve ser inferior a um) do peso dos dias anteriores. Isso garante uma variação ponderada ou tendenciosa em relação a dados mais recentes. (Para saber mais, confira a Planilha do Excel para a Volatilidade dos Googles.) A diferença entre a simples volatilidade e o EWMA para o Google é mostrada abaixo. A volatilidade simples efetivamente pesa cada retorno periódico em 0.196 como mostrado na Coluna O (tivemos dois anos de dados diários sobre o preço das ações. Isso é 509 devoluções diárias e 1509 0.196). Mas observe que a coluna P atribui um peso de 6, então 5.64, depois 5.3 e assim por diante. Essa é a única diferença entre variância simples e EWMA. Lembre-se: depois de somar toda a série (na coluna Q), temos a variância, que é o quadrado do desvio padrão. Se queremos volatilidade, precisamos lembrar de tomar a raiz quadrada dessa variância. Qual é a diferença na volatilidade diária entre a variância e EWMA no caso do Googles. É significativo: a variância simples nos deu uma volatilidade diária de 2,4, mas a EWMA deu uma volatilidade diária de apenas 1,4 (veja a planilha para obter detalhes). Aparentemente, a volatilidade de Googles estabeleceu-se mais recentemente, portanto, uma variação simples pode ser artificialmente alta. A diferença de hoje é uma função da diferença de dias de Pior. Você notará que precisamos calcular uma série longa de pesos exponencialmente decrescentes. Nós não vamos fazer a matemática aqui, mas uma das melhores características do EWMA é que toda a série se reduz convenientemente a uma fórmula recursiva: Recursiva significa que as referências de variância de hoje (ou seja, são uma função da variância dos dias anteriores). Você também pode encontrar esta fórmula na planilha e produz exatamente o mesmo resultado que o cálculo de longo prazo. A variação de hoje (sob EWMA) é igual a variância de ontem (ponderada por lambda) mais retorno quadrado de ontem (pesado por menos a lambda). Observe como estamos apenas adicionando dois termos em conjunto: variância ponderada de ontem e atraso de ontem, retorno quadrado. Mesmo assim, lambda é o nosso parâmetro de suavização. Um lambda mais alto (por exemplo, como RiskMetrics 94) indica decadência mais lenta na série - em termos relativos, teremos mais pontos de dados na série e eles vão cair mais devagar. Por outro lado, se reduzirmos a lambda, indicamos maior deterioração: os pesos caem mais rapidamente e, como resultado direto da rápida deterioração, são usados menos pontos de dados. (Na planilha, lambda é uma entrada, para que você possa experimentar sua sensibilidade). Resumo A volatilidade é o desvio padrão instantâneo de um estoque e a métrica de risco mais comum. É também a raiz quadrada da variância. Podemos medir a variação historicamente ou implicitamente (volatilidade implícita). Ao medir historicamente, o método mais fácil é a variância simples. Mas a fraqueza com variância simples é que todos os retornos recebem o mesmo peso. Então, enfrentamos um trade-off clássico: sempre queremos mais dados, mas quanto mais dados temos, mais nosso cálculo será diluído por dados distantes (menos relevantes). A média móvel ponderada exponencialmente (EWMA) melhora a variação simples ao atribuir pesos aos retornos periódicos. Ao fazer isso, podemos usar um grande tamanho de amostra, mas também dar maior peso aos retornos mais recentes. (Para ver um tutorial de filme sobre este tópico, visite a Tartaruga Bionica.) A abordagem EWMA possui um recurso atraente: requer relativamente poucos dados armazenados. Para atualizar nossa estimativa em qualquer ponto, precisamos apenas de uma estimativa prévia da taxa de variância e do valor de observação mais recente. Um objetivo secundário da EWMA é rastrear mudanças na volatilidade. Para valores pequenos, observações recentes afetam a estimativa prontamente. Para valores mais próximos de um, a estimativa muda lentamente com base nas mudanças recentes nos retornos da variável subjacente. O banco de dados RiskMetrics (produzido por JP Morgan e disponibilizado) usa o EWMA para atualizar a volatilidade diária. IMPORTANTE: a fórmula EWMA não assume um nível de variância médio de longo prazo. Assim, o conceito de volatilidade significa reversão não é capturado pelo EWMA. Os modelos ARCHGARCH são mais adequados para este fim. Um objetivo secundário da EWMA é acompanhar as mudanças na volatilidade, portanto, para valores pequenos, a observação recente afeta a estimativa prontamente e, para os valores mais próximos de uma, a estimativa muda lentamente para as mudanças recentes nos retornos da variável subjacente. O banco de dados RiskMetrics (produzido pela JP Morgan) e divulgado em 1994, usa o modelo EWMA para atualizar a estimativa diária de volatilidade. A empresa descobriu que, em uma variedade de variáveis de mercado, esse valor dá uma previsão da variância que se aproxima da taxa de variância realizada. As taxas de variação realizadas em um determinado dia foram calculadas como uma média igualmente ponderada nos 25 dias subseqüentes. Da mesma forma, para calcular o valor ótimo de lambda para o nosso conjunto de dados, precisamos calcular a volatilidade realizada em cada ponto. Existem vários métodos, então escolha um. Em seguida, calcule a soma de erros quadrados (SSE) entre a estimativa EWMA e a volatilidade realizada. Finalmente, minimize o SSE variando o valor lambda. Soa simples é. O maior desafio é concordar com um algoritmo para calcular a volatilidade realizada. Por exemplo, as pessoas da RiskMetrics escolheram os 25 dias subseqüentes para calcular a taxa de variação realizada. No seu caso, você pode escolher um algoritmo que utilize preços diários, HILO e OPEN-CLOSE. Q 1: podemos usar o EWMA para estimar (ou prever) a volatilidade mais de um passo à frente A representação da volatilidade do EWMA não assume uma volatilidade média de longo prazo e, portanto, para qualquer horizonte de previsão além de um passo, o EWMA retorna uma constante valor:
Comments
Post a Comment